Instructor:
Dr. Wonsuck Kim – E-mail: delta@jsg.utexas.edu Tel: 512-471-4203, Office: EPS 3.154

Class Time & Location: TTH 2 – 3:30 PM EPS 1.126
Office Hours: TTH 1 – 2 PM

The goal of this course is for students to develop their own numerical tools to quantitatively understand sediment transport and stratigraphic development in sedimentary basins. The focus of this class ranges from applications of the principles in fluid mechanics, sediment transport, and depositional mechanics to one-dimensional and quasi-two dimensional numerical modeling of sediment morphodynamics in various depositional settings such as a) river deltas, b) carbonate platforms, and c) submarine fans. Through this course, students will develop their own morphodynamic model as a research tool to understand their own data from the field and/or laboratory experiments.

CLASS SCHEDULE

1. (Aug 30, Sept 4): Introduction to Morphodynamics and Quantitative Stratigraphy
 Fossilized Dynamics: The morphology of sediment-fluid interface dynamically responds to both depositional mechanics and environmental forcing. Landscape evolution and the affiliated deposits record the fossilized dynamics of this spatiotemporal moving boundary. Evolution of the earth's surface and conservation of sediment mass / Types of deltas

 Application: Modern delta formation
 Kim, W., Flood-built land: Nature Geoscience, v. 5, no. 8, p. 521-522, DOI: 10.1038/ngeo1535

2. (Sept 6*): Geometric Forward Model
 We will develop our first model that uses sediment mass balance to predict shoreline migration for a delta with a flat topset and a vertical delta front. The model captures the effects of changes in boundary conditions (e.g., sediment supply) on the delta evolution. We will explore how much insight we can gain from using this very simple geometric model!

3. (Sept 11 – 18*): Updated Geometric Model
 The geometric model will be updated to include sloping fluvial and foreset surfaces. The effects of these geometric changes will be evaluated by running the updated model with the
set of boundary conditions previously used. The concept of autostratigraphy will also be reviewed.

4. (Sept 20*): Geometric Model: Application – Experimental design
We will modify the geometric model to design a 1D delta experiment. The class will be separated into two groups to plan the experiments. Each group will decide on their own experimental input parameters e.g., sea-level change and/or sediment supply for their group experiments.

1st Project (Group Project for Experimental Design: Due on Sept 25 before class)

On Sept 25 we will set up the experiments. Groups will conduct an experiment either on Sept 27 or Oct 2. Each group will conduct an hour-long experiment, and collect time-lapse images, shoreline locations and topographic profiles.

6. (Oct 4): The Use of Imagery in Laboratory Experiments
We will learn how to collect data from the digital imagery from the experiments. Some introductory instructions for using Adobe Photoshop and MATLAB will be provided.

2nd Project (Group Project for reporting results of the experiment: Due on Oct 9 before class)

7. (Oct 11): Student Presentations
Each group will make a 30-min presentation based on the results of their experiments and geometric models.

Morphodynamic Model
(Gary Parker’s e-book chapter: You can download the e-book at http://vtchl.uiuc.edu/people/parkerg/morphodynamics_e-book.htm)
We will review the principles of fluid mechanics and sediment transport in these lectures. The lectures will include an introduction of the Reynolds Equation & Navier-Stokes Equations with averaged terms. The class will also go over more details about sediment and flow properties, sediment transport modes, and bedload- & suspended-load transport.

9. **(Oct 23): Bankfull Characteristics of Rivers** (Gary Parker’s e-book Ch. 3)
Dimensionless parameters characterizing channel bankfull geometry and their relationships.

We will use a diffusion sediment transport relation to model deposition in a river basin. The model shows how the river responds to sediment supply changes and tectonic activities. We can estimate how long the sedimentary system takes to respond to the external forcing and how long it takes to reach a new equilibrium condition.

We will review a model that reproduces sedimentary basin evolution under constant subsidence or base-level rise. The model shows elevation, bankfull depth and width profiles. You will be able to see the reason for the concavity in river long profiles!

On Nov 13 we will set up the experiments. Groups will conduct an experiment either on Nov 15 or Nov 20. Each group will conduct an hour-long experiment, and collect time-lapse images, shoreline locations and topographic profiles.

Thanksgiving holidays (Nov 22): No Class

Individual meetings in office hours for independent project

13. **(Nov 27 & 29)*: Morphodynamics of Rivers ending in 1D Deltas** (Gary Parker’s e-book Ch. 34)
We will consider the shoreline as a moving boundary and model shoreline advance associated with relative sea-level changes. We will also capture our experiments using this
model and compare with the results from the previous geometric model. Which one do you think is better?

3rd Project (Due on Dec 1)

No Class (Dec 4 – 6): AGU Meeting

14. (Dec 11 – 12): Workshop at the Morphodynamics Laboratory
There will be a two-day workshop. We will conduct an experiment at the lab and join the talks provided by invited speakers who are well known for research in morphodynamics.

4th Independent Project (Due on Dec 13)

COURSE MATERIALS
Lecture notes and extra readings will be posted electronically on Blackboard.
Laptop computer is required in the classes marked with *

GRADING
Your grade for this course will be based on:
25% - 1st Project
25% - 2nd Project Group Presentation
25% - 3rd Project
25% - Independent Project

Letter grades are assigned at the end of the semester based on the total as:
A > 85
85 ≥ A- > 80
80 ≥ B+ > 75
75 ≥ B > 70
70 ≥ B- > 65

Write-ups for each class project & model must include:
1. A description of the questions addressed using the model
2. An annotated printout of your model code
3. A description of the strengths and weaknesses of the numerical model
4. Presentation and evaluation of model results.

An Independent Project will be developed by discussions with individual student (Individual meetings for independent project are strongly encouraged in office hours or by appointment). This project will build on concepts and numerical methods discussed in the course. The write-up for this independent project should be similar to a journal paper that
includes introduction, model description, model results and validation with data, short discussion, and conclusion.

OTHER INFORMATION
Attendance is vital for success in this course and I as well as others will value your contribution to class discussions.

Use of Blackboard
This course uses Blackboard, a Web-based course management system in which a password-protected site is created for each course. Blackboard will be used to distribute course materials, and to communicate and collaborate online. Blackboard is available at http://courses.utexas.edu.

IMPORTANT INFORMATION ON UNIVERSITY POLICIES

The University of Texas Honor Code
The core values of The University of Texas at Austin are learning, discovery, freedom, leadership, individual opportunity, and responsibility. Each member of the University is expected to uphold these values through integrity, honesty, trust, fairness, and respect toward peers and community.

University Electronic Mail Notification Policy
(Use of E-mail for Official Correspondence to Students)
All students should become familiar with the University’s official e-mail student notification policy. It is the student’s responsibility to keep the University informed as to changes in his or her e-mail address. Students are expected to check e-mail on a frequent and regular basis in order to stay current with University-related communications, recognizing that certain communications may be time-critical. It is recommended that e-mail be checked daily, but at a minimum, twice per week. The complete text of this policy and instructions for updating your e-mail address are available at http://www.utexas.edu/its/policies/emailnotify.html.

In this course e-mail will be used as a means of communication with students. You will be responsible for checking your e-mail regularly for class work and announcements. Note: if you are an employee of the University, your e-mail address in Blackboard is your employee address.

Documented Disability Statement
Students who require special accommodations need to get a letter that documents the disability from the Services for Students with Disabilities area of the Office of the Dean of Students (471-6259 – voice or 471-4641 – TTY for users who are deaf or hard of hearing). This letter should be presented to the instructor in each course at the beginning of the semester and accommodations needed should be discussed at that time. Five business days before an exam the student should remind the instructor of any testing accommodations that will be needed.
See Website below for more information: http://deanofstudents.utexas.edu/ssd/providing.php

Religious Holidays
Religious holy days sometimes conflict with class and examination schedules. If you miss an examination, work assignment, or other project due to the observance of a religious holy day you will be given an opportunity to complete the work missed within a reasonable time after the absence. It is the policy of The University of Texas at Austin that you must notify each of your instructors at least fourteen days prior to the classes scheduled on dates you will be absent to observe a religious holy day.