EDP 380C 4-Correlation		
Fall 2015 – Unique #: 10740	TTH 11:00 – 12:30	SZB 435

Instructor

Dr. Tiffany Whittaker *Phone*: (512) 471-2749 *Email*: t.whittaker@austin.utexas.edu **Office Hours**

Wednesdays: 4:00 – 5:00pm & by appointment *Office*: SZB 538H

Teaching Assistants

Melissa Rodgers *Email*: melissa.a.rodgers@utexas.edu

Office Hours

Mondays and Wednesdays: 1:00-2:30pm *Office*: SZB 536 (Open Area)

Course Description

- Topics will include simple linear regression, multiple regression, partial and semipartial correlation, multiple regression for prediction, hierarchical modeling, and regression analysis with categorical and continuous independent variables.
- The prerequisite for the course is EDP 380C 2-Fundamentals of Statistics.

Required Course Materials

- Warner, R. M. (2013). *Applied statistics: From bivariate through multivariate techniques* (2nd ed.). Los Angeles, CA: Sage.
- Class notes, available on our Canvas website. Class notes will be posted prior to the day on which the notes are discussed in class and may be retrieved on Canvas: <u>canvas.utexas.edu</u>.

Accommodations For Persons With Disabilities

Students with disabilities who require special accommodations need to get an accommodation letter that documents the disability from the Services for Students with Disabilities (471-6259 voice or 471-4641 TTY for users who are deaf or hard of hearing). This letter should be presented to the instructor in each course at the beginning of the semester and accommodations needed should be discussed at that time. Five business days before an exam, the student should remind the instructor of any testing accommodations that will be needed. See the following website for more information: http://ddce.utexas.edu/disability/.

Course Assessment

1. Exams: Three in-class exams will be administered at the start of class (9/24, 10/29, 12/3). Each exam will cover material from the lessons since the last exam (unless otherwise specified). You may use one 8.5" X 11," two-sided page of notes (students will likely be much better prepared if they don't need to rely on it). Missed exams may not be made up unless arrangements have been made prior to class.

2. Homework Assignments: There will be four assignments, each designed to give students a chance to apply and practice the concepts learned in class. These will typically involve using SPSS to solve correlation and regression problems. Assignments are due as specified in class, and should be submitted on time for full earned credit. Late work will be accepted for full earned credit IF AND ONLY IF arrangements are made with me PRIOR TO DUE DATE. Otherwise, 5% of the points possible will be deducted for each weekday the assignment is late. Please work alone on your homework assignments. You will complete and submit these assignments using Canvas.

Course Grades

Your exams (percentage correct on each exam) will be weighted equally. Grades will be posted to our Canvas website – please periodically check for any keypunch errors. Final grades will then be assigned based on the scale below.

Assessment	Weight
Total quiz points converted to a percentage	75%
Total homework points converted to a percentage	25%

Overall Course Percent	Grade
93% - 100%	А
90% - 92%	A-
87% - 89%	B+
83% - 86%	В
80% - 82%	B-
77% - 79%	C+
73% - 76%	С
70% - 72%	C-
below 70%	F

Unless a computational error has been made, grades will not be changed after the end of the semester. *No Extra Credit:* Your course grades are based only on the above information. There will be no extracredit opportunities.

Grades of "Incomplete:" Unless the student can demonstrate that near catastrophic events have led to a case of extreme hardship, grades of "Incomplete" will not be given.

Attendance: Attendance will not be part of your grade. Students who attend class, of course, tend to be better prepared for assignments.

Access to IBM SPSS

- IBM SPSS is available in the following campus labs: MEZ 2.104 (5 copies).
- Campus Labs: MEZ 2.104 (5 copies)
- <u>UT Campus Computer Store</u> 1 yearr license GradPack (PC or Mac)
- <u>Software Distribution & Sales</u> 1 year annual license (PC or Mac)
- <u>e-academy lease licenses</u> 6 month or 12 month student license
- A FREE option is to run SPSS by logging into a virtual environment from anywhere with a network connection to use the software. Instructions can be found by going to <u>desktop.edb.utexas.edu</u> and clicking the "Click Here" link under "Message Center." Be sure to also read this page: http://www.edb.utexas.edu/education/ito/tutorials/connect/coe desktop resources/coe-stats-vdi/

Correlation and Regression Methods Fall 2015 Tentative Schedule, Topics, and Reading Assignments

<u>Date</u>	Topic	Warner	Due
8/27	Course Introduction		
9/1	Review of Important Statistical Concepts	Ch. 1-3	
9/3	Measures of Association	Ch. 7	
	• Pearson product-moment correlation, r		
	• Assumptions associated with <i>r</i>		
	Significance testing of <i>r</i>		
9/8	Pearson Correlation		
	Confidence Intervals for <i>r</i>		
	• Factors that affect <i>r</i>		
9/10	Date Screening and Assumptions	Ch. 4	
9/15	Other Measures of Association	Ch. 8	
	Spearman correlation		
	Phi correlation		
	Chi-Square		
9/17	Other Measures of Association (continued)		
	Point-biserial correlation		
	Biserial correlation		
9/22	Introduction to Simple Linear Regression	Ch. 9 (pp.	<u>HW1</u>
	Relation to bivariate correlation	344-352)	
	Basic model and parameters		
9/24	EXAM 1		<u>EXAM 1</u>
9/29	Simple Linear Regression	Ch. 9 (pp.	
	Tests of significance	352-359)	
	Standard Error of Estimate	<i>,</i>	
	Confidence intervals		
10/1	More Simple Linear Regression	Ch. 9 (pp.	
	Variance partitioning	359-379)	
	Standardized estimates		
10/6	Introduction to Multiple Regression with 2	Ch. 11 (pp.	
	Predictors	429-433;	
	Relation to simple regression	438-462)	
	Tests of significance		
10/8	More Multiple Regression with 2 Predictors		HW2
	Confidence intervals		
	• Factors that affect parameter estimates		
10/13	Multiple Regression		
	Multicollinearity		
10/15	Multiple Regression	Ch. 10 (pp.	
	Partial and semipartial correlation	384-407)	
		Ch. 11 (pp.	
		433-438)	

			CK Synai
10/20	Multiple Regression (continued)	Ch. 10 (pp.	
	Patterns of Association	407-426)	
10/22	Outliers and diagnostics		HW3
10/27	Assumptions		
10/29	<u>EXAM 2</u>		EXAM 2
11/3	Categorical independent variables	Ch. 12	
11/5	Dummy coding	CII. 12	
11/5	Categorical independent variables (continued)		
	• Effects coding		
11/10	Interactions/Moderation	Ch. 15	
	Categorical variables		
11/12	Interactions/Moderation (continued)		<u>HW4</u>
	Continuous variables		
	Continuous and categorical variables		
11/17	Interactions/Moderation (continued)		
	 Describing interactions 		
11/19	Introduction to Mediation	Ch. 16 (pp. 645-666)	
11/24	More Mediation		
	Testing mediation		
11/26	Thanksgiving Holiday		
12/1	Model selection techniques	Ch. 14	
	Cross-validation		
12/3	EXAM 3		EXAM 3

Other Suggested References

- Berry, W. D. (1993). Understanding regression assumptions. Sage University Paper Series on Quantitative applications in the Social Sciences, 07-092. Newbury Park, CA: Sage Publications, Inc.
- Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). *Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences*. (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
- Edwards, A. L. (1984). An introduction to linear regression and correlation. New York, NY: Freeman.
- Glantz, S. A., & Slinker, B. K. (1990). *Primer of applied regression and analysis of variance*. New York, NY: McGraw-Hill, Inc.

Hamilton, L. C. (1992). Regression with graphics. Belmont, CA: Wadsworth, Inc.

- Hardy, M. A. (1993). Regression with dummy variables. Sage University Paper Series on
- Quantitative applications in the Social Sciences, 07-093. Newbury Park, CA: Sage Publications, Inc. Lewis-Beck, M. S. (1980). *Applied regression: An introduction*. Sage University Paper Series on
- Quantitative applications in the Social Sciences, 07-022. Newbury Park, CA: Sage Publications, Inc. Liebetrau, A. M. (1983). *Measures of association*. Sage University Paper Series on

Quantitative applications in the Social Sciences, 07-032. Newbury Park, CA: Sage Publications, Inc.