GEO. 420K - INTRODUCTION TO FIELD AND STRATIGRAPHIC METHODS

TUESDAY/THURSDAY SECTIONS, SPRING 2014

LECTURE:
Tuesday and Thursday, 2:00 - 3:00 p.m.; JGB 3.120

LAB:
Friday 2:00 - 5:00 p.m. in JGB 3.116 (#27840), JGB 3.120 (#27845), JGB 3.204 (#27850), JGB 3.222 (#27855)

INSTRUCTORS:
Dr. Joel Johnson, EPS 3.136
joelj@jsg.utexas.edu
Phone: Office - 232-5288

Dr. Randall Marrett, JGB 4.126
marrett@jsg.utexas.edu
Phone: Office - 471-2113

TEACHING ASSISTANTS:
JGB 3.116 Peter Laciano
JGB 3.120 Rattanaporn Fong-Ngem
JGB 3.204 Megan Ferre
JGB 3.222 Jeffrey Sitgreaves

OFFICE HOURS:
Johnson: T.B.A.
Marrett: Tues. and Thurs. 3-5

GRADING:
Field Projects 55% There will be no makeup exams or field projects.
Labs 15%
Lab Exam(s) 15%
Class Exam(s) 15%

PREREQUISITES:
A grade of C or better in Geo. 416K, 426P, and 416M (Geo. 426P may be taken concurrently with 420K) for B.S. Geology, or C or better in Geo. 416M and Geo. 416K for G.E.H., Geophysics, Hydrogeology, EVS and B.A. Geology. If you do not have these prerequisites and have not already done so, see one of us immediately.

OTHER ITEMS:
By registering for Geo. 420K, students agree to be available for field trips on at least 6 (six) weekends. See the attached schedule for the dates trips are planned. In addition some Friday labs will be conducted off campus, but during normally scheduled lab hours.

Announcements, information pertinent to field trips, labs, etc. will be posted on the 420K Blackboard page. Check it often for information about materials for upcoming labs and field trips.

Academic dishonesty will not be tolerated. Anyone in violation of University policy (see Student Handbook) will receive a failing grade and is subject to additional punitive measures, which may include expulsion from the University.

REQUIRED TEXT:

WEB SITE:
http://www.geo.utexas.edu/courses/420k/default.htm

REQUIRED ITEMS:
See equipment list below. These items are available in a supply packet at the University Coop.
GEO. 420K – FIELD TRIP DATES

Tuesday/Thursday Sections, SPRING 2014

By registering for GEO 420K, you agree to be available for field trips on at least 6 (six) weekends. The field trip weekends this semester are:

- **Trip 1:** February 1 OR 2 – Dr. Johnson
- **Trip 2:** February 15 OR 16 – Dr. Kerans
- **Trip 3:** March 1 OR 2 – Dr. Johnson
- **Trip 4:** March 29 AND 30 – Drs. Marrett & Helper
- **Trip 5:** April 12 OR 13 – Dr. Marrett
- **Trip 6:** April 26 OR 27 – Dr. Marrett

These dates are provided to you now so that you can plan your Spring semester weekend activities accordingly. Unlike other courses, the field trips are not supplementary to the classroom work; _they are 55% of your grade_. Your attendance and participation in all field exercises are required for a passing grade, without exceptions. Specific information for each trip, _including which days you are expected to attend_, will be posted on the “Trips” pages of the class web site/Blackboard and can be found in the Lab/Lecture Manual.

GEO. 420K – EQUIPMENT LIST

Most items are available in a single course packet for sale at the UT Co-Op.

REQUIRED MATERIALS

- Field notebook with waterproof paper (e.g. surveyor’s field book)
- Geologic hammer
- Silva Ranger Compass
- Hand lens - 10X Mag. or better
- Small squirt bottle for acid (acid will be provided)
- Six-inch ruler with mm and inch scale (best if with a protractor)
- Protractor, smaller is better
- Mechanical Pencil: Pentel 0.5 mm or equivalent with F or 2H hardness lead
- Colored pencil set - 6 colors minimum; hard lead, shouldn’t smudge
- 2 technical (drafting) pens (#0 and #00)
- Proper field clothes, particularly hat and shoes/boots
- Clipboard with cover (standard 8 1/2 x 11” size, _without a large metal clip_)
- Erasers/liquid paper
- Canteen (1 or 2 one-quart canteens)
- Watch
- Knapsack or carrying bag
- Grain size scale card – available in the JSG undergraduate office

DESIRABLE MATERIALS:

- Rainwear
- Aspirin, chap stick, bandaids, sunscreen or tanning lotion, insect repellent, etc.
- Toilet paper

PROHIBITED ITEMS:

- Firearms
- Alcoholic beverages in University vehicles
- Controlled substances and narcotics
LECTURE AND LAB SCHEDULE - GEO. 420K, TT Sections, 2014

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/14</td>
<td>Overview and Introduction; Geologic Timescales</td>
<td>Compass/Pace and Compass Map</td>
</tr>
<tr>
<td>1/16</td>
<td>The Compass- Measuring Attitudes</td>
<td></td>
</tr>
<tr>
<td>1/21</td>
<td>Sedimentary Rock Description: Essential Elements</td>
<td>Sedimentary Rock and Rock Unit Descriptions</td>
</tr>
<tr>
<td>1/23</td>
<td>Vertical Facies Successions in Clastic Strata</td>
<td></td>
</tr>
<tr>
<td>1/28</td>
<td>Basic Stratigraphy and Approaches to Subsurface Mapping</td>
<td>Net Sand Isopach</td>
</tr>
<tr>
<td>1/30</td>
<td>Texas GOM history and Tertiary Regional Context; Trip 1 Prep.</td>
<td>Mapping</td>
</tr>
<tr>
<td></td>
<td>Weekend Trip 1: Tertiary Clastic Section Correlation (2/1 or 2/2)</td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>Scales of Cyclicity and Correlation of Sedimentary Rocks</td>
<td>Cyclicity/</td>
</tr>
<tr>
<td>2/6</td>
<td>Trip 1 Debriefing</td>
<td>Fisher Plots</td>
</tr>
<tr>
<td>2/11</td>
<td>Carbonate Depositional Systems and Facies</td>
<td>Unconformities,</td>
</tr>
<tr>
<td>2/13</td>
<td>Cretaceous Stratigraphic Evolution of Central Texas; Trip 2 Prep.</td>
<td>Correlation & Facies</td>
</tr>
<tr>
<td></td>
<td>Weekend Trip 2: Cretaceous Carbonate Section Correlation (2/15 or 2/16)</td>
<td></td>
</tr>
<tr>
<td>2/18</td>
<td>Basin Classification; Sediment Provenance, Paleocurrents;</td>
<td>Topographic Maps</td>
</tr>
<tr>
<td></td>
<td>Late Paleozoic Ouachita Orogen and Associated Basin Fill</td>
<td></td>
</tr>
<tr>
<td>2/20</td>
<td>Trip 2 Debriefing</td>
<td></td>
</tr>
<tr>
<td>2/25</td>
<td>Tectonics and Basin Evolution</td>
<td>GPS*</td>
</tr>
<tr>
<td></td>
<td>Weekend Trip 3: Measuring Features in Sedimentary Rocks (3/1 or 3/2)</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>Trip 3 Debriefing; Lecture Review for Midterm Exam</td>
<td></td>
</tr>
<tr>
<td>3/6</td>
<td>Exam I</td>
<td>No Lab</td>
</tr>
<tr>
<td>3/9-3/15</td>
<td>SPRING BREAK</td>
<td></td>
</tr>
<tr>
<td>3/18</td>
<td>Mapping Techniques/Location Methods/GPS II</td>
<td>Geologic Maps I</td>
</tr>
<tr>
<td>3/20</td>
<td>Geology of the Llano Uplift</td>
<td></td>
</tr>
<tr>
<td>3/25</td>
<td>Interpreting Geologic Map Patterns</td>
<td>Geologic Maps II</td>
</tr>
<tr>
<td>3/27</td>
<td>Strike Lines, Dip Calculation and Unit Thicknesses from Maps; Trip 4 Prep.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weekend Trip 4: Mapping Project 1 (3/29 AND 3/30)</td>
<td></td>
</tr>
<tr>
<td>4/1</td>
<td>Introduction to Faulting</td>
<td>Geologic Maps III/ Folds and Faults</td>
</tr>
<tr>
<td>4/3</td>
<td>Introduction to Folding</td>
<td></td>
</tr>
<tr>
<td>4/8</td>
<td>Cross Section Construction</td>
<td>Cross Sections</td>
</tr>
<tr>
<td>4/10</td>
<td>Down Plunge Viewing/Geologic Maps as Cross Sections; Trip 5 Prep.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weekend Trip 5: Mapping Project 2 (4/12 or 4/13)</td>
<td></td>
</tr>
<tr>
<td>4/15</td>
<td>Folding, Continued</td>
<td>Lab Review for Final</td>
</tr>
<tr>
<td>4/17</td>
<td>Describing Fabrics in Tectonites</td>
<td></td>
</tr>
<tr>
<td>4/22</td>
<td>Igneous Rock Assemblages</td>
<td>Describing</td>
</tr>
<tr>
<td>4/24</td>
<td>Igneous and Metamorphic Map Patterns; Trip 6 Prep.</td>
<td>Metamorphic Rocks</td>
</tr>
<tr>
<td></td>
<td>Weekend Trip 6: pC Geology, Llano Uplift (4/26 or 4/27)</td>
<td></td>
</tr>
<tr>
<td>4/29</td>
<td>What is G.I.S.?</td>
<td>Lab Final Exam</td>
</tr>
<tr>
<td>5/1</td>
<td>Evaluation and Review</td>
<td></td>
</tr>
<tr>
<td>5/7, 9-12 noon; or 5/10, 7-10 PM</td>
<td>Exam II</td>
<td></td>
</tr>
</tbody>
</table>

Lab conducted outdoors, prepare accordingly.
Course Objectives

Why a class in geological field methods? Geology is first and foremost a field science. Field geology and field geologists provide literally the ground truth for geologic concepts and theories of how the earth works. The degree to which we, as geologists, are successful observers and interpreters of rocks in the field depends in large measure on what we are prepared to see and record. The old adage “I wouldn’t have believed it if I hadn’t seen it” is, in the case of field geology, more truthfully “I wouldn’t have seen it if I hadn’t believed it”. We explore. We discover. Unfortunately, without sufficient experience and preparation we also frequently ignore what we don’t recognize or understand. Developing what anthropologists have called “professional vision” – the ability to quickly recognize and sort the significant from insignificant – is one of the most important skills a field geologist possesses. You will begin honing that skill in this class.

Successful field work also depends greatly on how well we can formulate and test ideas while in the field. Without proper preparation, including a strong grounding in field methods, we are little better than rock hounds out for a day of casual collecting. Field geology is not merely collecting data and samples; it is about making sense of the geology around you, about making geologic interpretations. Landscapes are histories, with time marked by boundaries in the rocks, soil and sediment. A geologic map or a measured section is the articulation of that history, with each line marking a before and after, a hiatus that might last a second or a billion years. Through our maps and graphical logs, we represent time as space. The ability to create, read and interpret such product is best developed from training and practice in a field setting. It all begins by making and recording observations. An accurate record in the form of a map, measured section, photograph, sketch, a carefully documented sample, field notes, etc. provides a permanent, solid basis upon which to develop testable ideas and interpretations – the plot of the story. Without such evidence, interpretations are fanciful fables; there is no scientific basis to objectively evaluate them.

Field proficiency has long been a distinguishing characteristic of our science. As a geoscientist, you are expected to be a proficient scientific observer and recorder. Your unique skills and training in this area separate you from lawyers, engineers, chemists and other professionals with whom you might one day work. Geology is rooted in the scientific method, so the process of formulating hypotheses and testing those hypotheses through careful data collection are fundamental skills to a geologist.

As suggested by the course name, this class contains two main components. This semester our principal objectives are to: 1) learn and apply geologic field methods to describe, measure, map, sample and report on rocks in the field and in the laboratory; 2) acquire an understanding of the elements of stratigraphy (e.g. what is a Formation? what are lithostratigraphic, biostratigraphic and chronostratigraphic units? what is a type section? how are rock units correlated?) and the field methods upon which they are based. Like all sciences, geology has its own vocabulary. There is no better way to learn a language than to be immersed in it, and field experiences, however brief, provide that immersion.

Some of you may find this an uncomfortable experience. Unlike most subjects, field work can not be mastered by studying hard, nor is there a set formula for successfully interpreting the rocks you will study. You will learn largely by doing and making mistakes. Get comfortable with this idea now and you’ll be less anxious in the long run.

Finally, it is often said “The best geologist is the one who has seen the most rocks” and there is much truth to it. Six weekend field trips and a semester of labs will provide an introduction, the beginnings of a mental catalog of rocks and field relationships that can provide a framework to build upon in future classes, later field work and a future career in the geosciences.