Alex Hanson

ajhanson@utexas.edu

EDUCATION	Massachusetts Institute of Technology (MIT), Cambridge, MA	
	 Doctor of Philosophy (Ph.D.) in Electrical Engineering Thesis: Enabling Miniaturized Grid-Interface Power Conversion Advisor: Professor David Perreault Cumulative GPA: 5.0/5.0 	Sep 2016 – Jun 2019
	 Master of Science (S.M.) in Electrical Engineering Thesis: Enabling HF Power Conversion: Magnetic Components and a Wide Voltage Range Converter Cumulative GPA: 5.0 / 5.0 	Sep 2014 – Jun 2016
	Dartmouth College, Hanover, NH	
	 Bachelor of Engineering (B.E.) in Electrical Engineering Thesis: Fabricating On-Chip Magnetics for Power Conversion Advisor: Professor Charles Sullivan Highest Honors, Tau Beta Pi Engineering GPA: 3.92 / 4.00 	Sep 2010 – Jun 2014
	 Dual Bachelor of Arts (B.A.) in Engineering Sciences and Physics Phi Beta Kappa, John S. Tamagni 1956 Scholarship Cumulative GPA: 3.89/4.00 	Sep 2010 – Jun 2014
INDUSTRY EXPERIENCE	FINsix, Menlo Park, CA - Design Engineering Intern	Jun 2016 – Aug 2016
	 Designed high-bandwidth current transformer for IC characterization Designed components for lifetime test setup for 20 kW of installed power Implemented setup and procedure for other tests 	
	Linear Technology, North Chelmsford, MA - Design Engineering Intern	Jul 2014 – Sep 2014
	Designed discrete-level realization of novel wireless power control schemeExperimentally characterized and improved the system	
	Domain Surgical, Salt Lake City, UT - Design Engineering Intern	Dec 2011 – Mar 2012
	Benchmark, validation, and QC testing for novel electrocautery systemHelped design and prototype a cleaning tool for electrocautery tips	

PUBLICATIONS JOURNAL

(* = SUPERVISOR)

- [J6] S. Lim, A.J. Hanson, J.A. Santiago, D.J. Perreault, "Bus Converter Using Isolation Capacitance for ZVS and Invariant Operation" in *IEEE Journal on Emerging and Selected Topics in Power Electronics (JESTPE)* (Accepted)
- *[J5] **A.J. Hanson**, A.F. Martin (Co-First Author), D.J. Perreault, "Energy and Size Reduction of Grid-Interfaced Energy Buffers Through Line Waveform Control" in *IEEE Transactions on Power Electronics (TPEL)* (Accepted)
- *[J4] R.S. Yang, A.J. Hanson, B.A. Reese, C.R. Sullivan, D.J. Perreault, "A Low-Loss Inductor Structure and Design Guidelines for High-Frequency Applications" in *IEEE Transactions on Power Electronics (TPEL)* (Accepted)
- [J3] D.V. Harburg, A.J. Hanson, J. Qiu, B.A. Reese, J.D. Ranson, D. Otten, C.G. Levey, C.R. Sullivan, "Micro-Fabricated Racetrack Inductors with Thin-Film Magnetic Cores for On-Chip Power Conversion" in *IEEE Journal of Emerging and Selected Topics in Power Electronics* (*JESTPE*), vol. 6, no. 3, pp. 1280-1294, Sept. 2018
- [J2] **A.J. Hanson**, J.A. Belk, S. Lim, C.R. Sullivan and D.J. Perreault, "Measurements and Performance Factor Comparisons of Magnetic Materials at High Frequency," in *IEEE Transactions on Power Electronics*, vol. 31, no. 11, pp. 7909-7925, Nov. 2016

[J1] A.J. Hanson, C.A. Deline, S.M. MacAlpine, J.T. Stauth and C.R. Sullivan, "Partial-Shading Assessment of Photovoltaic Installations via Module-Level Monitoring," in *IEEE Journal of Photovoltaics*, vol. 4, no. 6, pp. 1618-1624, Nov. 2014

CONFERENCE (PEER REVIEWED)

- *[C11] A.F. Martin, A.J. Hanson, D.J. Perreault, "Energy and Size Reduction of Grid-Interfaced Energy Buffers Through Line Waveform Control," 2018 IEEE Workshop on Control and Modeling of Power Electronics (COMPEL), Padova, Italy, 2018, pp. 1-8
- *[C10] B. Galapon, A.J. Hanson, D.J. Perreault, "Measuring Dynamic On Resistance in GaN Transistors at MHz Freuqencies," 2018 IEEE Workshop on Control and Modeling of Power Electronics (COMPEL), Padova, Italy, 2018, pp. 1-8
 - [C9] A.J. Hanson, D.J. Perreault, "A High Frequency Power Factor Correction Converter with Soft Switching," 2018 IEEE Applied Power Electronics Conference (APEC), San Antonio, TX, 2018, pp. 2027-2034
- *[C8] R.S. Yang, A.J. Hanson, C.R. Sullivan, D.J. Perreault, "Design Guidelines for Low-Loss High-Frequency AC Inductors," 2018 IEEE Applied Power Electronics Conference (APEC), San Antonio, TX, 2018, pp. 579-586
- [C7] A.J. Hanson, P. Lindahl, S.D. Strasser, A.F. Takemura, D.R. Englund, J. Goldstein, "Technical Communication Instruction for Graduate Students: The Communication Lab vs a Course," *American Society for Engineering Education Annual Conference (ASEE)*, Columbus, OH, 2017
- [C6] A.J. Hanson, R.S. Yang, S. Lim, D.J. Perreault, "A Soft-Switched High Frequency Converter for Wide Voltage and Power Ranges," 2016 IEEE International Telecommunications Energy Conference (INTELEC), Austin, TX, 2016, pp. 1-8
- [C5] S. Lim, A.J. Hanson, J.A. Santiago-González and D.J. Perreault, "Capacitively-aided switching technique for high-frequency isolated bus converters," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 98-105
- [C4] A.J. Hanson, J.A. Belk, S.Lim, D.J. Perreault and C.R. Sullivan, "Measurements and performance factor comparisons of magnetic materials at high frequency," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 5657-5666
- [C3] A.J. Hanson, C.A. Deline, S.M. MacAlpine, J.T. Stauth and C.R. Sullivan, "Partial-Shading Assessment of Photovoltaic Installations via Module-Level Monitoring," 2014 IEEE Photovoltaic Specialist Conference (PVSC), Denver, CO, 2014
- [C2] D.V. Harburg, A.J. Hanson, Y. Song, J. Qiu, R. Tian, C.G. Levey, C.R. Sullivan, D. Otten, "Measured performance and micro-fabrication of racetrack power inductors," 2013 IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, 2013, pp. 614-620
- [C1] J.Qiu, A.J. Hanson, C.R. Sullivan, "Design of toroidal inductors with multiple parallel foil windings," *Control and Modeling for Power Electronics (COMPEL)*, 2013 IEEE 14th Workshop on, Salt Lake City, UT, 2013, pp. 1-6

PATENTS

[P1] D. J. Perreault, A.J. Hanson, S. Lim, and R.S. Yang. "Wide-Operating-Range Resonant-Transition Soft-Switched Converter" U.S. Patent Pending

Microsystems Annual Research Conference (MARC), MIT

TEACHING/

MENTORING

- One of two co-chairs in charge of MARC, under the direction of the MTL director
- Normal duties include orchestrating abstract submissions, creating proceedings, securing keynote speakers, venue and finances, and website development with a \sim 20-student committee and MTL staff

 Discovered a departmental split among attendees/non-attendees and organized inclusion efforts for non-EECS groups

• Improved communication training in conjunction with the Communication Lab

EECS Communication Advisor, MIT Communication Lab

 Mentored EECS graduate students to improve their communication skills for upcoming publications, presentations, etc.: 250+ appointments

- Designed and delivered multiple workshops on proposal writing and other tasks
- Helped design and implement a graduate-level course on professional communication,
- including academic papers, oral presentations, funding proposals, elevator pitches, etc.
- Authored a paper [C7] for the American Society for Engineering Education (ASEE) conference demonstrating the effectiveness of the Communication Lab
- Helped organize and develop curriculum for a one-week seminar for academics
- looking to adapt the Communication Lab model to their institutions: both 2017 and 2018
- Began partnerships with organizations within MIT, including the Center for Integrated Circuits and Systems and the MTL Annual Research Conference
- Served as Seminar Chair for the MTL Annual Research Conference (MARC 2018).
- Organized a pitch/poster workshop and liased with the Communication Lab

Mentor to Undergraduate Researchers, MIT

- MIT 2018 Outstanding UROP Graduate Student Mentor Award
- Benjamin Cary, enabling large-scale HF core loss measurements through automation
- Noah Moroze, designing very high bandwidth current sensors

 Rod Bayliss, expanding characterization of HF magnetic materials and developing high-performance, high-power RF inductors

- Dayna Erdmann, in collaboration with the Buonassisi solar research group, developing high-efficiency circuits for innovative applications of solar energy
- Anna Song, expanding characterization of HF magnetic materials
- Andreea Martin, examining the purposeful use of harmonic input currents to reduce energy buffer requirements in power factor correction [C11],[J6]
- Bryson Galapon, measuring dynamic on-state resistance in GaN [C10]

• Rachel Yang, developing a wide-range high frequency converter, developing HF magnetic structures [C6],[C8],[J5]

Julia Belk, characterizing HF magnetic materials [C4],[J2]

Laureates and Leaders Program, MIT

- Mentored undergraduates who are underrepresented in STEM and interested in pursuing graduate school
- Helped mentees navigate the decision to go to graduate school, preparing and applying, and difficult professional settings like unhealthy environments

Teaching Assistant, Power Electronics (Graduate), MIT

- Developed curriculum and delivered two weeks of class sessions
- Normal duties included grading, office hours, in-class demos
- Student Evaluations: Median 7.0/7.0, Avg 6.8/7.0

Summer Course Instructor, MIT High School Studies Program

- Designed and taught an introduction to calculus
- Designed and taught a lab-based introduction to digital electronics

May 2018 - Present

May 2015 - Present

Dec 2014 – Present

Jul 2015 - Aug 2017

Sep 2016 - Present

Feb 2018 - Jun 2018

	 Formal Teacher Training, MIT Teaching and Learning Lab Kaufmann Teaching Certificate Program Ed-Tech Teaching Certificate Program Introduction to Evidence-Based Undergraduate STEM Teacoupled with MIT-based learning community 	Jun 2015 – Dec 2016 Paching – Coursera course	
	 Teaching College-Level Science and Engineering – gradua Teaching Assistant, Introduction to Circuits, Dartmouth College Led laboratory sections, advised on final project work 	te course at MIT Jan 2014 – Mar 2014	
	Teaching Assistant, Digital Electronics, Dartmouth CollegeLed laboratory sections, advised on final project work	Jun 2013 – Aug 2013	
	Recitation Section Leader, Intro E&M, Dartmouth CollegeInaugural group to lead course material reviews on behalf	Jan 2013 – Jun 2013 of engineering department	
AWARDS	MIT Outstanding UROP Graduate Student Mentor	May 2018	
	 For exceptional guidance and teaching in a research setting Awarded to one individual across all of MIT Undergraduates nominate faculty, instructors, lecturers, graduate students and other research affiliates 		
	 Paul L. Penfield Student Service Award For exceptional service to the disciplinary community, the and the institute One student out of EECS department 	May 2016 department,	
	 William M. Portnoy First Place Prize Paper Award For [C4] at ECCE 2015 One paper is chosen by the IEEE Industrial Applications S Power Electronic Devices and Components Committee 	Sep 2016 ociety (IAS)	
	Best Student Paper FinalistFor [C3] at PVSC 2014	Jun 2014	
INVITED TALKS	Power Ferrites: Evolving Needs in Materials and Manufacturing International Conference on Ferrites (ICF 12) 	9 Oct 2019	
	Power Electronics - A New Landscape and its Impact on Research and Applications		
	 University of Illinois, Urbana-Champaign University of California, Los Angeles University of California, San Diego University of California, Berkeley Utah State University University of Texas at Austin Northeastern University 	Mar 2019 Feb 2019 Feb 2019 Feb 2019 Feb 2019 Feb 2019 Feb 2019 Feb 2019 Feb 2019	
	Advances and Impacts of Dower Magnetics Stanford University	Nov 2010	
	 On the magnetics bottleneck and recent efforts to address i 	100V 2018	
	Device Conversion of a System University of Device de	- I.1 2040	
	 On leveraging multi-level (component, circuit, architecture) and cross-level observations to improve power converter size and efficiency. 		